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ABSTRACT:

A knot in a directed graph is a useful concept in deadlock
detection. This paper presents a distributed algorithm based
on the work of Dijkstra and Scholten to identify a knot in a
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1. INTRODUCTION

A vertex v. in a directed graph is in a knot if for every

vertex vj reachable from vi , vi is reachable from vj. Chang [ 1

shows that knot is a useful concept in deadlock detection.

Dijkstra [ 2 ] has proposed a distribdted algorithm for detecting

if a given process in a network of processes is in a knot.

His algorithm is based on his previous work with C. S. Scholten

[ 3 1 on termination detection of diffusing computations. We

propose an algorithm for knot detection which is also based

on [3 ], but is conceptually simpler. We also discuss the

extensions of our algorithm to a more general class of problems.

2. MODEL OF A NETWORK OF COMMUNICATING PROCESSES

A process is a sequential program which can communicate

with other processes by sending/receiving messages. Two pro-

cesses P and Q are said to be neighbours if they can communi-

cate directly with one another without having messages go

through intermediate processes. We assume that communication

channels are bi-directional: if P can send messages to Q then

Q can send messages to P. A process knows its neighbours but is

otherwise ignorant of the gereral communication structure of the network.

We assume a very simple protocol for message communication;

this protocol is equivalent to the one used by Dijkstra and

Scholten [ 3 3. Every process has an input buffer of unbounded
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length. If process P sends a message to a neighbour process

Q, then the message gets appended at the end of the input

buffer of Q after a finite, arbitrary delay. We assume that

(1) messages are not lost or altered during transmission, (2)

messages sent from P to Q arrive at Q's input buffer in the

order sent, and (3) two messages arriving simultaneously at

an input buffer are ordered arbitrarily and appended to the

buffer. A process receives a message by removing it from its

input buffer.

The assumption of unbounded length buffers is for ease of

exposition. We show, in section 5.1, that the input buffer

length of process Q can be bounded by the number of neighbours

of Q.

3. A DISTRIBUTED ALGORITHM FOR KNOT DETECTION

Consider a network of processes corresponding to a given

directed graph G; there is a one-to-one correspondence between

processes in the network and vertices in the graph and a

process pi in the network represents vertex vi in G, for all

i, and pi,Pj are neighbours if edge (vi,vj ) or (v.,vi) exists

in G. Process p1 initiates a computation to determine if

v is in a knot.

3.1 Local Variables of Processes

Every process pi maintains the following variables.

succeeding(i) : this boolean variable is set true when pi

determines that vi is reachable from vI.

A''
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Initially this variable is false for all pi,

i 3 1 and is true for pl. Eventually succeeding(i)

will be true if and only if v. is reachablel1

from vI.

preceding(i) Same as above except that it represents whether

v1 is reachable from vi -

subordinate(i): this is integer valued and will be set to 1 if

and only if succeeding(i) and not preceding(i);

else it will be set to 0. vI is in a knot if

and only if subordinate(i) is eventually zero

for every process i.

cs(i) this is an integer valued variable, which

keeps the partial sum of some subordinate

variables. A goal of the program is to estab-

lish the following at termination:

cs(l) = subordinate(i)

i

Therefore v1 is in a knot if and only if

cs(l) = 0 at termination.

We discuss in section 3.2 the different types of messages

sent among processes. In short, a process pi may send a message

to pj and pj sends an acknowledgement (ack) to pi for every

message that p. receives from pi. We introduce the following

variables related to message and ack transmission.
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num(i) : is the number of unacknowledgee messages, i.e.

the number of messages sent by this process pi for

which acks have not been received so far.

father(i) : is a process from which pi, iil, received a

message when its num(i) was last zero. father(i)

is undefined initially.

Our goal is to maintain a rooted tree structure at all

times over processes whose num > 0; father will denote the

parent in this tree structure and p1 the root.

3.2 Messages Sent Among Processes

There are two types of messages sent between neighbours

in thi. algorithm.

(i) Structure message or message : has 2 components

(type, p) where, type = suc or pre, and

p is the identity of the sender process. Process pi sends

(suc, pi ) to pj if there is a path from v, to vj in which v

is the prefinal vertex. Process pi sends (pre, pi) to p,

if there is a path from v. to v1 in which vi follows vj in

the path.

(ii) Acknowledgement message or ack: is of the form (ack, c),

where c is an integer. Acks are used to update cs and num.

The entire computation terminates when process p1 receives

acks for all messages that it sent; i.e. when num(l) is

decremented to zero. Acks for all messages are sent back
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as soon as the messages are received except for messages

received from father; an ack to a father is sent only when

num next becomes zero.

Convention

It is convenient for purposes of proof to define an

atomic action within which invariant assertions may be tem-

porarily violated and outside which the invariants must hold.

We write <A1 ;A2 ;*.. A > to show that executions of statements

AA2, n must be considered as an atomic action. We use

Pascal like notation with the added commands send and receive

to write our programs.

3.3 Knot Detection Algorithm

Convention

We write succeeding, preceding, etc. for succeeding(i),

preceding(i), when the context is clear.

Overview of the Algorithm

As stated earlier, one goal of the algoritm is to maintain

a rooted directed tree structure over the set of processes pi

whose num(i) > 0. The root of the tree will be p1 and father(i)

will be the parent in the tree for pi, il. In order to maintain

the tree structure, we must ensure that, (1) a process pi, iol,

acquires a father only if it does not have one currently: this

is guaranteed since a process acquires a father only when its

num(i) becomes nonzero, and (2) a process pi can be removed from

the tree, i.e. set its num(i) = 0, only if it was a leaf node:

S
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this will be guaranteed by every process sending its last ack

to its father. Computation tprminates when the tree is empty.

We will also maintain the invariant (1) qiven in lemma

4.2, which states that the sum of cs over all processes plus

those in the acks in transit equal the sum of subordinates

over all processes. The algorithm will ensure that if num(i)= 0

and i/l, then cs(i) = 0. Therefore, when the tree is empty,

cs(i) = 0, for all i, i/l and hence

cs(1) = [ subordinate(i) .
i

Process p1 is in a knot if and only if cs(l) = 0.

3.3.1 Algorithm for p1

Initialization

father is undefined;
subordinate := 0; cs := 0; num 0;
<succeeding := true;
num := num + nuii5ei of successors of vl;
send(suc, p,) to all successors>;
<preceding .= true;
num := num + num-er of predecessors of v
send(pre, pl) to all predecessors>

end

Upon receiving a structure message (type, p)

send (ack, 0) to p (Ml)

Upon receiving an acknowledgement (ack, c)

begin
cs := cs + c; num := num - 1; (M2)
if num= 0 then terminate computation
en v-is in a knot if cs =0} 4

S.....,- -.... .7 ~

Lend
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3.3.2 Algorithm for pi, i4 1

Initialization

begin
father is undefined; subordinate 0; cs 0, num 0;
succeeding := false; preceding := false

end

Upon receiving a message (type, p)

begin

{update father or send an ack immediately}

if num= 0
then father := p

else begin <send (ack, cs) to p; cs := 0> end; (Li)

{update succeeding and preceding if necessary}

if type = suc and not succeeding fFor the first time, pi
has determined that v. is reachable from vI

1

then
begin <succeeding := true;

num := num + number of successors of vi;
send (suc, pi) to all successors>

end;i

if type = pre and not preceding {For the first time, pi

has determined that v1 is reachable from v.1

then
-e-in <preceding := true;

num := num + number of predecessors of vi;
send (pre, pi) to all predecessors>

end;

iupdate subordinate if necessary. Also update cs to maintain
the invariant in lemma 4.2)
if succeeding and not preceding

then
eegn <cs := cs-subordinate+ 1; subordinate 1> end (L2)

else
egin <cs .= cs -subordinate +0; subordinate := 0> end; (L3)

{send ack to father if num = 0)

if num-- 0

then begin <send (ack, cs) to father; cs : O> end (L4)
end

* .7'
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Upon Receivinq an acknowledqement (ack, c)

cs := cs + c; num := num- 1; (L)
if num= 0

then
-begin <send (ack, cs) to father; cs 0> end (L6)

end

4. PROOF OF CORRECTNESS

4.1 Lemma

At any point in the computation, the set of processes

with num > 0 form a rooted tree with p1 as the root and the

parent relation specified by the local variable "father."

Proof

The lemma holds vacuously initially. num(i) and father(i)

may be changed only upon receipt of a message or an ack by

process i. If a process with num > 0 receives a message

then it does not alter its father, thus preserving the tree

property. Similarly, if a process has num > 0 after processing

an ack, it does not alter the tree structure. If a process pj

changes num(j) from zero then it must have received a message

from some other process pi on the tree and must have set

father(j) = i, thus preserving the tree property.

We now show that only a leaf node can decrement its num

to zero. If pi is on the tree and is not a leaf then there

is a process pj with num(j) > 0 and father(j) = i; then pj

will not return an ack to pi while pj remains on the tree and

hence num(i) > 0, while p, remains on the tree. Therefore

only a leaf node can decrement its num to 0, which preserves

the tree property.
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Let T, at any point in computation, denote the set of

ack messages which are in Transit, i.e. which have been sent

but have not yet been received.

4.2 Lemma

The following is an invariant.

. cs (i) + c = subordinate(i) (i)
i (ack,c)cT i

Proof

The lemma holds initially since all the terms in the

equation are zero. For pi, i 1, the terms in the equations

are modified only at program points Ll through L6, and for PI'

these terms can be modified only at Ml or M2. The reader may

easily convince himself that the equation is left invariant

by the execution of the statements at these program points.

4. 3 Theorem

Assume that process p1 terminates computation (in step M2).

cs(l) = 0 if and only if vI ia in a knot.

Proof

We will first show that when p1 terminates computation

(I) cs(i) = 0 for i # 1, and 0:I) subordinate(i) is correctly

set and (III)the set T is empty. The theorsmn follows directly

from the invariant proven in lemma 4.2.

(I) When p1 terminates computation in step M2, num(l) = 0.

Then the tree is empty since p1 was the root of the tree.

Therefore num(i) = 0 for all i. If num(i) = 0 then cs(i) = 0,

for all i, ijl, because every change to num(i) is followed by

the code to set cs(i) to 0 if num(i) is 0 (steps L4,L6).
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(Ii) If vi is reachable from vl, it follows by induction on

path length to vi that pi will eventually receive a message

which will result in succeeding(i) set true; succeeding(i)

remains true thereafter. Similarly for preceding(i). There-

fore subordinate(i) will eventually be set to its correct

value. When assignment is made to succeeding(i) or preceding(i),

Pi has not returned an ack to its father and hence the compu-

tation could not be over. Therefore these variables are

assigned their correct values before the termination of computation.

(Ill) Since the tree is empty, every process must have received

acks corresponding to all messages sent. Therefore there can be
no ack in transit, i.e. set T is empty.
4.4 Lemma

Pl will terminate computation in finite time.

Proof

A process Pi sends at most two messages (type, pi),

to any other process p. because (1) a message is sent only

when succeeding or preceding is set to true and (2) succeeding

and preceding are never reset to false. Because the graph is

finite the total number of messages sent is bounded. Hence

the total number of acks sent is also bounded. Observe that

every process must send or receive either a message or an ack

every time it starts to execute. Therefore a process can

switch from idle to executing only a finite number of times.

There are no loops in the program; therefore every executing

process will become idle in finite time. Hence every process

in the network will cease to execute in finite time and no

more messages or acks will be sent or received from then on.
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We now show that the tree must be empty at this point.

If not, let p. be a leaf node of the tree; num(i) > 0 since

Pi is on the tree. There is no pj on the tree for which

father(j) = pi and hence pi must have received all its out-

standing acks; therefore num(i) = 0! Contradiction!

5. NOTES ON THE KNOT DETECTION ALGORITHM

5.1 Bounding the Buffer Size

We assumed earlier for purposes of exposition that buffers

are of unbounded length. In the knot detection algorithm a

process sends at most 2 messages to any neighbour process and

therefore no process sends more than 2 acks to any other pro-

cess. Hence the buffer length for any process need not exceed

4 times the number of neighbours of the process.

5.2 Efficiency

This algorithm is superior to the brute-force algorithm

in which: (1) process p1 computes successor*, the set of ver-

tices reachable from v1 and (2) predecessor*, the set of

vertices that can reach v and (3) then declares that vI is

in a knot if and only if successor* c predecessor*. The compu-

tation of successor* (predecessor*) can be done by using an

algorithm similar to the one proposed here - every ack carries

with it a set of successors (predecessors). Therefore a suc-

cessor at distance d from vI , will have its identity transmitted

through d processes to reach vI. Total message length will be

at least 0(N 2 ), for an N-vertex graph as opposed to 0(E) for

our algorithm where E is the number of edges.
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6. EXTENSIONS

We show in this section that the ideas in the knot detec-

tion algorithm can be extended to solve a very general class

of problems. Consider a distributed computation which is

initiated by process p1 sending messages to some of its neigh-

bors. Any other process can send messages only after receiving

a message. The computation terminates when no process has

any more messages to send and all messages that have been sent

have been received. Dijkstra and Scholten [3] were the first

to identify this class of computations, which they call diffusing

computations. They proposed an algorithm, using the growing

and shrinking tree, to detect termination of diffusing computations.

Our contribution is to show how the same idea may be exploited

to compute a network-wide function of locally computed results.

Let local-result(i) denote some computed result at process

pi, at termination of the entire computation. It is required

to compute global-result at the termination of computation,

where

global-result = f(local-result(i), for all i) (2)

where f is any arbitrary computable function.

The knot detection algorithm computed the global result

cs (1),

cs(1) = [ subordinate(i), (3)

i
i.e. f

,. .- . .-
- - . -, -_i *II- -|
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We propose two schemes to compute network-wide functions.

Note that our algorithm can be used to develop distributed

algorithms according to the following methodology: in order to

compute some global-result, invent a function f and local-result(i)

satisfying (1) and then design a distributed algorithm to com-

pute local-result(i) at process pi, for all i. Then superimpose

our algorithm to compute the global-result. A variation of

this idea appears in [4], where a number of other problems

amenable to this approach, are listed.

..

i i I I -
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One difficulty with a straightforward implementation is

that a process cannot know when network computation has termi-

nated. Process pi knows that network computation can terminate

only when num(i) = 0; however, pi cannot assert the converse,

i.e. that network computation may not have terminated even if

num(i) = 0. Hence pi must send back its current value of

local-result(i) to its father every time that it decrements

num(i) to zero. This causes a problem: p. may send back a

local-result to its father, and subsequently get another message

which causes it to compute a new local-result. Therefore pi

must cancel the old local-result value. We propose two

mechanisms for cancelling out-of-date local results: bags and

time-stamps.

To simplify exposition in our discussion of cancellation

schemes we will assume that there is no delay between sending

and receiving a message, i.e. there is never any message

in transit: the reader can easily convince himself that the

arguments also apply when the transmission delay is not zero.

6.1 Bags

Each process pi maintains two bags all(i) and cancelled(i)

Each bag element is of the form (j, local-result(j)). If

(j,x) is an element in cancelled(i) then process pj has

definitely cancelled an out-of-date local-result x. If (j,x)

is an element of all(i), then at sometime pj posted a local

II
_ _ _______ 
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result x. The elements in all(i) are not necessarily current.

Every local result that pj has posted appears in the union

of bags all(i), for every i. Similarly, all local results

that pj has cancelled appear in the union of cancelled(i),

for every i. Therefore p.'s current local result is in the

difference of these two bag unions. In other words, the goal

is to maintain the following invariant. Let r(j) denote the

current local result of process j, and let U denote the union

operation over bags.

U (j,r(j)) = U all(i) - U cancelled(i)
j i i

Initially, all(i) holds the initial local result of pi

and cancelled(i) is empty. To post a current local result

x and cancel the previous local result y, process pi adds

(i,x) to all(i) and (i,y) to cancelled(i).

Two bags abag and cbag are returned with every ack in

the form (ack, abag, cbag ). When pj sends an ack it takes

the elements out of bag all(j) and puts them into abag, and

similarly puts elements from cancelled(j) into cbag, and then

sends abag and cbag along with the ack. If pi receives (ack,

abag, cbag) it adds the contents of abag to all(i) and cbag

to cancelled(i).

At termination, all(i) and cancelled(i) will be empty

for i 91 1, and cancelled(l) will contain tuples corresponding

to all cancelled local-results, and all(l) will contain

tuples corresponding to all local-results, current and

cancelled. By removing the cancelled results (i.e. elements
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of cancelled(l)) from all(l), p, can determine the current

local-results for all processes. The knot detection algorithm

of section 3 uses the bag idea; the information in the two

bags have been condensed into a single integer cs. Adding an

element (j,x) to all(i) is implemented by incrementing cs(i)

by x. Adding an element (j,y) to cancelled(i) is achieved by

decrementing cs(i) by y.

A Note on Efficiency

The sizes of the bags returned with acks can be reduced

by having each process pi remove all elements common to all(i)

and cancelled(i) from both all(i) and cancelled(i).

6.2 Time-Stamps

Each process pi maintains a set S(i) of triples of the

form (j, n(j), local-result(j)) where n(j) is a time-stamp

local to process pj. When a process pi wishes to post a new

local-result x (and cancel an out-of-date result) it increments

n(i) and adds (i, n(i), x) to S.

When pi sends an ack, it sends (ack, S(i)), and then sets

S(i) to empty. Upon receiving an ack, (ack, B), pi sets S(i)

to the union of S(i) and B. Upon termination, S(i) will be

empty for all i # 1, and S(1) will contain all tuples

(i, n(i), S(i)) that have been sent. p1 can identify the

current local-results because they will be associated with

the latest time-stamps.

Efficiency

The sizes of the sets returned with acks can be reduced

by having each process pi discard all elements in S(i) that

it can identify as being out-of-date.

IAl
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